Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido(8-hydroxyquinoline- $\kappa^2 N$,O)-(quinolin-8-olato- $\kappa^2 N$,O)zinc methanol monosolvate

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^{b,c_*}

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 8 August 2011; accepted 16 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.082; data-to-parameter ratio = 15.6.

In the title compound, $[Zn(C_9H_6NO)Cl(C_9H_7NO)]\cdot CH_3OH$, the Zn^{II} ion is *N*,*O*-chelated by both a neutral and a deprotonated quinolin-8-ol ligand, with a chloride ligand in the apical site completing the square-pyramidal coordination geometry. The Zn^{II} ion is displaced by 0.586 Å in the direction of the chloride ligand from the atoms forming the square plane. In the crystal, the components are linked by intermolecular $O-H\cdots O$ hydrogen bonds, generating chains along the *b* axis.

Related literature

For the crystal structure of 8-hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato- $\kappa^2 N$,O)zincate(II) acetonitrile disolvate, see: Najafi *et al.* (2011).

Experimental

Crystal data

 $\begin{bmatrix} Zn(C_9H_6NO)Cl(C_9H_7NO) \end{bmatrix} \cdot CH_4O \qquad \gamma = 110.549 \ (5)^{\circ} \\ M_r = 422.17 \qquad V = 859.58 \ (7) \ \text{Å}^3 \\ \text{Triclinic, } P\overline{1} \qquad Z = 2 \\ a = 8.4110 \ (4) \ \text{\AA} \qquad Mo \ K\alpha \ \text{radiation} \\ b = 8.4692 \ (4) \ \text{\AA} \qquad \mu = 1.61 \ \text{mm}^{-1} \\ c = 13.2667 \ (7) \ \text{\AA} \qquad T = 100 \ \text{K} \\ \alpha = 99.905 \ (4)^{\circ} \qquad 0.15 \times 0.15 \ \text{mm} \\ \beta = 95.341 \ (4)^{\circ} \\ \end{bmatrix}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.795, T_{max} = 0.795$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.082$ S = 1.053806 reflections 244 parameters 2 restraints

6878 measured reflections

3806 independent reflections 3258 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogon bond goometry ($Å^{\circ}$)

Hydrogen-bond geometry (A,).
----------------------------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O2 - H2 \cdots O3 \\ O3 - H3 \cdots O1^{i} \end{array}$	0.84(1)	1.71 (1)	2.547 (2)	170 (3)
	0.84(1)	1.76 (1)	2.592 (2)	176 (3)

Symmetry code: (i) x, y + 1, z.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5311).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1280.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m1283 [doi:10.1107/S160053681103337X]

Chlorido(8-hydroxyquinoline- $\kappa^2 N, O$)(quinolin-8-olato- $\kappa^2 N, O$)zinc methanol monosolvate

E. Najafi, M. M. Amini and S. W. Ng

Comment

We have previously determined the structure of 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato- $\kappa^2 N, O$)zincate(II) acetonitrile disolvate (Najafi *et al.*, 2011). In the present study, the corresponding reaction of zinc chloride and the parent 8-hydroxyquinoline homolog in methanol yielded a neutral mono-solvated compound. The Zn^{II} atom in ZnCl(C9H6NO)(C9H7NO)][•]CH3OH is *N,O*-chelated by a neutral as well as by a deprotonated 8-hydroxyquinoline ligand and it exists in a square-pyramidal geometry (Fig. 1). Adjacent molecules are linked by O–H…O hydrogen bonds through the solvent molecule to generate a linear chain running along the b-axis of the triclinic unit cell (Fig. 2).

Experimental

Zinc chloride (0.13 g, 1 mmol) and 8-hydroxyquinoline (0.29 g, 2 mmol) were loaded into a convection tube and the tube was filled with methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, $U_{iso}(H)$ 1.2 to 1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint O–H 0.84 ± 0.01 Å; their temperature factors were refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $ZnCl(C_9H_6NO)(C_9H_7NO)]$ CH₃OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.

Chlorido(8-hydroxyquinoline- $\kappa^2 N$,O)(quinolin-8-olato- $\kappa^2 N$,O)zincate methanol monosolvate

Crystal data

[Zn(C9H6NO)Cl(C9H7NO)]·CH4O	Z = 2
$M_r = 422.17$	F(000) = 432
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.631 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.4110 (4) Å	Cell parameters from 3680 reflections
b = 8.4692 (4) Å	$\theta = 2.6 - 29.3^{\circ}$
c = 13.2667 (7) Å	$\mu = 1.61 \text{ mm}^{-1}$
$\alpha = 99.905 \ (4)^{\circ}$	T = 100 K
$\beta = 95.341 \ (4)^{\circ}$	Cuboid, yellow
$\gamma = 110.549 \ (5)^{\circ}$	$0.15 \times 0.15 \times 0.15 \text{ mm}$
$V = 859.58 (7) \text{ Å}^3$	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	3806 independent reflections
Radiation source: SuperNova (Mo) X-ray Source	3258 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.045$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scans	$h = -8 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -10 \rightarrow 10$
$T_{\min} = 0.795, \ T_{\max} = 0.795$	$l = -17 \rightarrow 17$
6878 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0336P)^{2} + 0.2331P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3806 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
244 parameters	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.64683 (4)	0.45465 (3)	0.717891 (19)	0.01236 (9)
Cl1	0.91659 (8)	0.57790 (8)	0.80776 (4)	0.01774 (14)
01	0.5263 (2)	0.2082 (2)	0.73472 (12)	0.0148 (4)
O2	0.6496 (2)	0.6842 (2)	0.64293 (12)	0.0156 (4)
O3	0.6795 (2)	0.9898 (2)	0.72616 (12)	0.0196 (4)
N1	0.4816 (3)	0.5009 (2)	0.81134 (14)	0.0121 (4)
N2	0.6744 (3)	0.3866 (2)	0.56612 (14)	0.0121 (4)
C1	0.3948 (3)	0.3574 (3)	0.84634 (16)	0.0118 (5)
C2	0.4213 (3)	0.2018 (3)	0.80397 (16)	0.0123 (5)
C3	0.3344 (3)	0.0553 (3)	0.83838 (17)	0.0153 (5)
H3A	0.3474	-0.0499	0.8109	0.018*
C4	0.2270 (3)	0.0585 (3)	0.91326 (17)	0.0163 (5)
H4	0.1689	-0.0450	0.9350	0.020*
C5	0.2039 (3)	0.2065 (3)	0.95567 (17)	0.0157 (5)
Н5	0.1328	0.2064	1.0073	0.019*
C6	0.2873 (3)	0.3594 (3)	0.92149 (17)	0.0131 (5)
C7	0.2700 (3)	0.5192 (3)	0.95927 (17)	0.0143 (5)
H7	0.1977	0.5269	1.0093	0.017*
C8	0.3578 (3)	0.6616 (3)	0.92317 (17)	0.0149 (5)
H8	0.3470	0.7689	0.9481	0.018*
C9	0.4638 (3)	0.6488 (3)	0.84925 (17)	0.0142 (5)
Н9	0.5250	0.7490	0.8253	0.017*
C10	0.7339 (3)	0.5164 (3)	0.51453 (16)	0.0121 (5)
C11	0.7243 (3)	0.6787 (3)	0.55646 (17)	0.0131 (5)
C12	0.7850 (3)	0.8125 (3)	0.50826 (18)	0.0159 (5)
H12	0.7808	0.9216	0.5368	0.019*
C13	0.8537 (3)	0.7903 (3)	0.41679 (18)	0.0163 (5)
H13	0.8946	0.8849	0.3841	0.020*
C14	0.8633 (3)	0.6356 (3)	0.37360 (17)	0.0149 (5)
H14	0.9110	0.6233	0.3119	0.018*
C15	0.8012 (3)	0.4946 (3)	0.42191 (17)	0.0130 (5)
C16	0.7985 (3)	0.3275 (3)	0.38085 (17)	0.0150 (5)
H16	0.8439	0.3067	0.3192	0.018*
C17	0.7302 (3)	0.1966 (3)	0.43052 (17)	0.0167 (5)
H17	0.7224	0.0829	0.4017	0.020*

supplementary materials

C18	0.6719 (3)	0.2314 (3)	0.52412 (17)	0.0146 (5)
H18	0.6287	0.1402	0.5591	0.018*
C19	0.8321 (4)	1.0712 (3)	0.8018 (2)	0.0255 (6)
H19A	0.8904	1.1906	0.7952	0.038*
H19B	0.9090	1.0079	0.7907	0.038*
H19C	0.8020	1.0711	0.8714	0.038*
H2	0.653 (4)	0.785 (2)	0.664 (2)	0.033 (9)*
Н3	0.626 (4)	1.056 (4)	0.727 (2)	0.040 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.01352 (17)	0.01182 (15)	0.01295 (15)	0.00472 (12)	0.00608 (11)	0.00385 (11)
C11	0.0132 (3)	0.0223 (3)	0.0164 (3)	0.0050 (3)	0.0049 (2)	0.0030 (2)
01	0.0179 (10)	0.0128 (8)	0.0163 (8)	0.0067 (7)	0.0085 (7)	0.0049 (7)
O2	0.0220 (10)	0.0138 (9)	0.0148 (8)	0.0091 (8)	0.0096 (7)	0.0039 (7)
O3	0.0210 (11)	0.0166 (9)	0.0222 (9)	0.0101 (8)	0.0017 (8)	0.0016 (7)
N1	0.0120 (11)	0.0112 (9)	0.0134 (9)	0.0046 (8)	0.0023 (8)	0.0029 (8)
N2	0.0129 (11)	0.0119 (9)	0.0136 (9)	0.0057 (9)	0.0040 (8)	0.0049 (8)
C1	0.0091 (12)	0.0139 (11)	0.0117 (10)	0.0029 (10)	0.0005 (9)	0.0046 (9)
C2	0.0127 (12)	0.0127 (11)	0.0114 (11)	0.0046 (10)	0.0023 (9)	0.0031 (9)
C3	0.0161 (13)	0.0126 (11)	0.0159 (12)	0.0042 (10)	0.0034 (10)	0.0023 (9)
C4	0.0154 (13)	0.0160 (12)	0.0156 (12)	0.0016 (10)	0.0028 (10)	0.0072 (10)
C5	0.0120 (13)	0.0191 (12)	0.0155 (11)	0.0038 (10)	0.0055 (9)	0.0049 (10)
C6	0.0092 (12)	0.0158 (12)	0.0130 (11)	0.0032 (10)	0.0015 (9)	0.0033 (9)
C7	0.0147 (13)	0.0186 (12)	0.0121 (11)	0.0079 (11)	0.0053 (9)	0.0044 (9)
C8	0.0174 (14)	0.0145 (12)	0.0158 (11)	0.0094 (11)	0.0044 (10)	0.0025 (9)
C9	0.0148 (13)	0.0136 (11)	0.0153 (11)	0.0057 (10)	0.0031 (10)	0.0048 (9)
C10	0.0125 (13)	0.0101 (11)	0.0132 (11)	0.0033 (10)	0.0015 (9)	0.0037 (9)
C11	0.0110 (12)	0.0148 (11)	0.0154 (11)	0.0058 (10)	0.0037 (9)	0.0049 (9)
C12	0.0158 (13)	0.0128 (12)	0.0193 (12)	0.0063 (10)	0.0030 (10)	0.0022 (10)
C13	0.0164 (14)	0.0152 (12)	0.0180 (12)	0.0038 (11)	0.0049 (10)	0.0089 (10)
C14	0.0153 (13)	0.0180 (12)	0.0119 (11)	0.0050 (11)	0.0042 (9)	0.0061 (9)
C15	0.0112 (12)	0.0145 (11)	0.0120 (11)	0.0039 (10)	0.0006 (9)	0.0025 (9)
C16	0.0167 (13)	0.0166 (12)	0.0118 (11)	0.0061 (11)	0.0040 (9)	0.0028 (9)
C17	0.0203 (14)	0.0120 (11)	0.0174 (12)	0.0070 (11)	0.0049 (10)	-0.0008 (9)
C18	0.0157 (13)	0.0122 (11)	0.0153 (11)	0.0038 (10)	0.0037 (9)	0.0038 (9)
C19	0.0260 (16)	0.0225 (14)	0.0262 (14)	0.0086 (13)	0.0004 (12)	0.0042 (11)

Geometric parameters (Å, °)

Zn1—O1	2.0377 (16)	С7—С8	1.367 (3)
Zn1—N1	2.0392 (18)	С7—Н7	0.9500
Zn1—N2	2.0547 (17)	C8—C9	1.401 (3)
Zn1—Cl1	2.2505 (7)	С8—Н8	0.9500
Zn1—O2	2.3257 (16)	С9—Н9	0.9500
O1—C2	1.327 (3)	C10—C15	1.410 (3)
O2—C11	1.360 (3)	C10-C11	1.424 (3)
O2—H2	0.842 (10)	C11—C12	1.363 (3)

O3—C19	1.425 (3)	C12—C13	1.404 (3)
О3—Н3	0.836 (10)	C12—H12	0.9500
N1—C9	1.332 (3)	C13—C14	1.369 (3)
N1—C1	1.364 (3)	С13—Н13	0.9500
N2—C18	1.328 (3)	C14—C15	1.414 (3)
N2—C10	1.366 (3)	C14—H14	0.9500
C1—C6	1.409 (3)	C15—C16	1.417 (3)
C1—C2	1.441 (3)	C16—C17	1.367 (3)
С2—С3	1.379 (3)	C16—H16	0.9500
C3—C4	1.407 (3)	C17—C18	1.399 (3)
С3—НЗА	0.9500	C17—H17	0.9500
C4—C5	1.369 (3)	C18—H18	0.9500
C4—H4	0.9500	С19—Н19А	0.9800
C5—C6	1.414 (3)	C19—H19B	0.9800
С5—Н5	0.9500	С19—Н19С	0.9800
C6—C7	1.422 (3)		
$\Omega_1 = Z_n 1 = N_1$	82 18 (7)	С6—С7—Н7	120.2
01 - 7n1 - N2	95 64 (7)	$C_{7}^{-}C_{8}^{-}C_{9}^{0}$	120.2 119.7 (2)
N1_7n1_N2	143 92 (8)	C7 - C8 - H8	120.1
$\Omega_1 = Zn_1 = \Omega_2$	112 11 (5)	$C_{2}^{0} = C_{2}^{0} = H_{2}^{0}$	120.1
$N_1 = Z_{n_1} = C_{n_1}$	108 81 (6)	N1_C9_C8	120.1 122.2(2)
N2 - 7n1 - C11	105.34 (6)	N1_C9_H9	122.2 (2)
01-7n1-02	109.94(0) 150.43(7)	C8-C9-H9	118.9
N1 - 7n1 - 02	90.44 (6)	N_{2} C_{10} C_{15}	122 63 (19)
N2 = 7n1 = 02	73 80 (6)	N_{2} C10 C11	122.05(19) 117.76(19)
$Cl1_7n1_02$	97 40 (5)	C_{15} C_{10} C_{11}	119.6 (2)
$C_{2} = 01 = 7n1$	111 33 (13)	02-011-012	115.0(2) 125.2(2)
$C_{11} = O_{2} = Z_{n1}$	109 79 (12)	02 - C11 - C10	125.2(2)
C11-O2-H2	109.(2)	C_{12} C_{11} C_{10}	119.6 (2)
Zn1-O2-H2	136 (2)	C11 - C12 - C13	1204(2)
C19—O3—H3	109 (2)	C11-C12-H12	119.8
C9-N1-C1	1189(2)	C13 - C12 - H12	119.8
C9 - N1 - Zn1	129.73 (17)	C14—C13—C12	121.6 (2)
C1 - N1 - Zn1	110.92 (14)	C14—C13—H13	119.2
C18 - N2 - C10	118 31 (19)	C12—C13—H13	119.2
C18 - N2 - Zn1	122.72 (15)	C13 - C14 - C15	119.2 (2)
C10-N2-Zn1	117.44 (14)	C13—C14—H14	120.4
N1 - C1 - C6	122.56 (19)	C15-C14-H14	120.4
N1-C1-C2	116 5 (2)	C10-C15-C14	119.6 (2)
C6-C1-C2	121.0 (2)	C10-C15-C16	117.0(2)
01 - C2 - C3	124.4 (2)	C14—C15—C16	123.4 (2)
O1—C2—C1	118.4 (2)	C17—C16—C15	119.6 (2)
C3—C2—C1	117.3 (2)	C17—C16—H16	120.2
C2—C3—C4	121.4 (2)	C15—C16—H16	120.2
С2—С3—НЗА	119.3	C16—C17—C18	119.5 (2)
C4—C3—H3A	119.3	C16—C17—H17	120.2
C5—C4—C3	121.8 (2)	C18—C17—H17	120.2
C5—C4—H4	119.1	N2—C18—C17	122.8 (2)
C3—C4—H4	119.1	N2—C18—H18	118.6

supplementary materials

C4—C5—C6	119.0 (2)	C17—C18—H18	118.6
С4—С5—Н5	120.5	O3—C19—H19A	109.5
С6—С5—Н5	120.5	O3—C19—H19B	109.5
C1—C6—C5	119.5 (2)	H19A—C19—H19B	109.5
C1—C6—C7	116.9 (2)	O3—C19—H19C	109.5
C5—C6—C7	123.6 (2)	H19A—C19—H19C	109.5
C8—C7—C6	119.7 (2)	H19B—C19—H19C	109.5
С8—С7—Н7	120.2		
N1—Zn1—O1—C2	-7.37 (15)	N1—C1—C6—C5	-178.8 (2)
N2—Zn1—O1—C2	-151.09 (15)	C2—C1—C6—C5	-0.1 (3)
Cl1—Zn1—O1—C2	99.82 (15)	N1—C1—C6—C7	0.9 (3)
O2—Zn1—O1—C2	-84.30 (18)	C2—C1—C6—C7	179.6 (2)
O1—Zn1—O2—C11	-92.97 (18)	C4—C5—C6—C1	-1.3 (3)
N1—Zn1—O2—C11	-167.77 (16)	C4—C5—C6—C7	179.1 (2)
N2—Zn1—O2—C11	-20.70(15)	C1—C6—C7—C8	-0.8 (3)
Cl1—Zn1—O2—C11	83.19 (15)	C5—C6—C7—C8	178.9 (2)
O1—Zn1—N1—C9	179.1 (2)	C6—C7—C8—C9	0.1 (3)
N2—Zn1—N1—C9	-92.0 (2)	C1—N1—C9—C8	-0.5 (3)
Cl1—Zn1—N1—C9	68.3 (2)	Zn1—N1—C9—C8	-171.85 (17)
O2—Zn1—N1—C9	-29.6(2)	C7—C8—C9—N1	0.6 (4)
O1— $Zn1$ — $N1$ — $C1$	7.27 (15)	C18 - N2 - C10 - C15	-3.6(3)
N2— $Zn1$ — $N1$ — $C1$	96.13 (18)	Zn1-N2-C10-C15	162.71 (18)
Cl1-Zn1-N1-C1	-103.50(15)	C18 - N2 - C10 - C11	175.6 (2)
O2—Zn1—N1—C1	158.53 (15)	Zn1—N2—C10—C11	-18.1 (3)
01 - 7n1 - N2 - C18	-22.1(2)	Zn1-O2-C11-C12	-163.1 (2)
N1 - Zn1 - N2 - C18	-1066(2)	Zn1 - O2 - C11 - C10	18 3 (2)
Cl1— $Zn1$ — $N2$ — $Cl8$	92.65 (19)	N_{2} C10 C11 O2	-2.4(3)
$\Omega^2 - 7n1 - N^2 - C18$	-1739(2)	$C_{15} - C_{10} - C_{11} - O_{2}$	176.8(2)
01 - 7n1 - N2 - C10	172 22 (17)	N_{2} C_{10} C_{11} C_{12}	178.9 (2)
N1 - 7n1 - N2 - C10	87.8 (2)	C_{15} C_{10} C_{11} C_{12} C_{12}	-1.9(4)
$C11_7n1_N2_C10$	-73.00(17)	02-011-012-013	-1774(2)
$\Omega^2 = 7n1 = N^2 = C10$	20.40 (16)	C_{10} C_{11} C_{12} C_{13}	1, (1, 1, 1, 2) 1, 2, (4)
$C_{2} = N_{1} = C_{1} = C_{6}$	-0.3(3)	$C_{11} - C_{12} - C_{13} - C_{14}$	-0.5(4)
7n1-N1-C1-C6	17259(18)	C_{12} C_{13} C_{14} C_{15}	0.5(4)
C_{9} N1 C_{1} C_{2}	-179.0(2)	N_{2} C_{10} C_{15} C_{14}	-1789(2)
7n1-N1-C1-C2	-61(2)	$C_{11} = C_{10} = C_{15} = C_{14}$	20(3)
2n1 - 01 - 02 - 03	-173.89(19)	N_{2} C_{10} C_{15} C_{16}	2.6(3)
2n1 - 01 - 02 - 03	63 (3)	$C_{11} = C_{10} = C_{15} = C_{16}$	-1766(2)
N1-C1-C2-O1	-0.1(3)	C_{13} C_{14} C_{15} C_{10}	-1.3(4)
$C_{1}^{-} C_{1}^{-} C_{2}^{-} O_{1}^{-}$	-1788(2)	$C_{13} = C_{14} = C_{15} = C_{16}$	1.3(+)
N1 - C1 - C2 - C3	-1799(2)	C10-C15-C16-C17	177.2(2)
$C_{1} = C_{2} = C_{3}$	1 3 (3)	$C_{14} = C_{15} = C_{16} = C_{17}$	-1775(2)
01 - 02 - 03 - 04	1.3(3) 1700(2)	$C_{1} = C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	-32(4)
$C_1 = C_2 = C_3 = C_4$	-12(2)	$C_{10} = C_{10} = C_{17} = C_{10}$	5.2 (4) 1.1 (4)
$C_1 - C_2 - C_3 - C_4$	-0.2(4)	C_{10} N_2 C_{10} C_{17}	-164.42(10)
$C_2 = C_3 = C_4 = C_5$	0.2(4)	2.11 - 102 - 0.10 - 0.17	104.42(19)
しっ―し4―しう―し0	1.4 (4)	U10-U1/-U10-N2	2.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O3	0.84 (1)	1.71 (1)	2.547 (2)	170 (3)
O3—H3…O1 ⁱ	0.84 (1)	1.76 (1)	2.592 (2)	176 (3)
Symmetry codes: (i) $x, y+1, z$.				

